Typová lokalita Kolešovický potok a modelování přírodě blízkých opatření modely Bilan, HEC-HMS a HYPE

Adam Vizina, Miriam Dzuráková a kol.

Zadavatel: Ministerstvo životního prostředí

Praha, duben 2018
Název a sídlo organizace:
Výzkumný ústav vodohospodářský T. G. Masaryka, v.v.i., Podbabská 2582/30 Praha 6 160 00

Zadavatel:
Odbor ochrany vod

Zahájení a ukončení úkolu:
duben 2017 - duben 2018

Místo uložení zprávy:
VÚV TGM, v.v.i.

Ředitel:
Ing. Tomáš Urban

Náměstek ředitele pro výzkumnou a odbornou činnost:
Ing. Libor Ansorge, Ph.D.

Vedoucí odboru:
Ing. Anna Hrabánková

Řešitelé:
Obsah

1 Úvod 3
 1.1 Metodika řešení 3
 1.1.1 Metoda CN křivek 3
 1.1.2 Hydrologický model Bilan 5
 1.1.3 Model HEC-HMS 6
 1.1.4 Model HYPE 8

2 Modelování 9
 2.1 Opatření 12
 2.1.1 Výstavba malé vodní nádrže (odkaz na katalog) 13
 2.2 Klima 13
 2.3 Návrhové srážky 14
 2.4 Analýza trendů 16
 2.5 Výsledky modelování hydrologické bilance modelem Bilan 17
 2.6 Výsledky modelování modelem HEC-HMS 18
 2.7 Výsledky modelování modelem HYPE 19

3 Závěr 24
Seznam obrázků, map a grafů

<table>
<thead>
<tr>
<th></th>
<th>Název obrázku/Mapa/Graf</th>
<th>Stránka</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Umístění povodí</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Umístění povodí (satelitní mapa)</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Povodí Kolešovického potoka s uzávěrovým profilem v hrázi MVN Senomaty</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Vizualizace MVN Senomaty na Kolešovickém potoce: sypaná zemní hráz o výšce 6,8 m, celkový objem nádrže 670 725 m³, plocha nádrže 25,6 ha, nadlepšení průtoku 21,4 l/s (zdroj: Povodí Vltavy, www.nase-voda.cz)</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Návrhové srážky s dobou opakování 2, 5, 10, 20 a 50 let</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Průběh 5-min intenzit návrhových srážek</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>Rozdělení jednotlivých typů návrhové srážky</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>Analýza trendů srážek a teplot vzduchu pomocí Mann-Kendall testu</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>Hodnoty CN pro zájmové území a různé vláhové podmínky</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>Průměrné měsíční odtokové výšky ve formě boxplotů pro jednotlivé varianty hodnocení</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>Změny měsíčních odtokových výšek ve formě boxplotů (pře opatřením a po realizaci opatření)</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>Návrhové průtoky dle N - letostí pro jednotlivé typy vln (čárkování-před opatřením, plně-po opatření)</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>Anorganický dusík</td>
<td>22</td>
</tr>
<tr>
<td>17</td>
<td>Organický dusík</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>Pevný fosfor</td>
<td>23</td>
</tr>
<tr>
<td>19</td>
<td>Rozpustný fosfor</td>
<td>24</td>
</tr>
</tbody>
</table>
Seznam tabulek

1. Hodnoty CN II pro jednotlivé kategorie půdního pokryvu a hydrologické skupiny půd .. 4
2. Hodnoty CN II pro jednotlivá opatření a hydrologické skupiny půd .. 26
3. Vyhodnocení krátkodobých srážko-odtokových epizod .. 27
1 Úvod

V předložené studii je rámce kvantifikován vliv přírodě blízkých retenčních opatření na hydrologický systém jednotlivých povodí. Navržený postup umožňuje stanovit hodnoty parametrů modelů Bilan a HMS pro povodí, jehož hydrologický systém je ovlivněn plošnými a liniovými přírodě blízkými retenčními opatřenimi. Cílem je vyhodnocení jednotlivých opatření jak na dlouhodobý hydrologický režim, tak na extrémní odtoky v daných lokalitách.

Hodnocení jednotlivých opatření bylo provedeno v následujících scénářích:

1. bez opatření - normální stav (pro dlouhodobou bilanci)
2. bez opatření - kritický stav (pro extrémní odtoky)
3. navržená opatření - normální stav (pro dlouhodobou bilanci)
4. navržená opatření - kritický stav (pro extrémní odtoky)

1.1 Metodika řešení

Pro hodnocení ovlivnění odtokového režimu byla použita metoda SCS-CN v kombinaci se dvěma hydrologickými modely. Posouzení vlivu na dlouhodobou hydrologickou bilanci bylo provedeno pomocí modelu Bilan, pro posouzení vlivu na extrémní odtoky byl využit konceptuální model HMS a pro hodnocení kvality vody model HYPE.

1.1.1 Metoda CN křivek

Metoda SCS-CN je v ČR známa jako metoda odtokových křivek (CN z anglického Curve Number) je založena na experimentálním výzkumu. Metoda je celosvětově oblíbená vzhledem ke své jednoduchosti a stále se hojně využívá, přestože má mnohé teoretické omezení. Používá se ke stanovení velikosti přímého odtoku (povrchový odtok plus rychlý podpovrchový odtok) na základě znalostí úhrnu příčinné srážky a hydrologických vlastností půdy a půdního pokryvu. Metoda byla testována a ověřena mnoham výzkumy a studiemi odtokových poměrů. V malých povodích existuje dobrá korelace mezi naměřenou výškou odtoku a výškou odtoku stanovenou metodou SCS-CN. Průměrné hodnoty CN pro libovolné území lze snadno určit z běžných datových podkladů s využitím nástrojů GIS. Metoda CN křivek může být použita při navrhování vodohospodářských opatření a drobných staveb nacházejících se v plše povodí nebo na vodních tocích do velikosti povodí 5 km² (Havlík a Fremrová, 2010). Mezi opatření a stavby prováděných v plše povodí patří např. technická protierzóní opatření jako jsou
1. ÚVOD

Modelování přírodního blízkého opatření - Kolešovický potok

Dráhy soustředěného povrchového odtoku, zatravněné údolnice, průlehy, záchytné příkopy nebo zasakovací pásy, mezi typické stavby na malých vodních tocích pak patří malé vodní nádrže nebo suché nádrže (Smelík, 2016).

Metoda byla odvozena na zemědělsky využívaných povodích, jejichž plocha není větší než 10 km². Zejména pro velká povodí je potřeba u výsledků výpočtu počítat se značnými nepřesnostmi. Dalším faktorem ovlivňujícím přesnost metody je časové rozložení intenzit srázek, které metoda CN nezohledňuje a pro jakýkoliv zvolený průběh srázky dává totožný objem odtoku. Průměrná hodnota CN se pro konkrétní území určuje jako plošný vážený průměr hodnot pro jednotlivé pozemky. Tato detailní čísla se stanovují obvykle podle metodických tabulek. Pro potřeby projektu byly hodnoty CN převzaty z originální metodiky (SCS, 1986). Pro přiřazení CN k elementárním odtokovým plochám je potřeba znát druh půdního pokryvu (PP) a hydrologickou skupinu půd (HSP). Datová vrstva PP byla odvozena ze ZABAGED se zjednodušením na 10 kategorií povrchu. Pro určení hydrologické skupiny půd byla využita volně dostupná data BPEJ pro zemědělskou půdu a vrstva Lesních typů od ÚHÚL překlasiifikovaná na HSP dle metodiky (Macků, 2012). Tabelované hodnoty CN se zpravidla vztahují k průměrnému vlhkostnímu stavu daného indexem předchozí srázky (IPS2), pro potřeby extremálního modelování byly hodnoty CN II dále přepočteny i pro nasycený stav daný indexem IPS3. Pro každé řešené území byly určeny průměrné hodnoty CN II a CN III, které byly následně přepočteny na jím příslušnou retenci. Tyto hodnoty jsou nezbytné pro stanovení parametru Spa v hydrologickém modelu BILAN a objem přímého odtoku v modelu HMS. V následující tabulce 1 jsou uvedeny tabelované CN II hodnoty pro jednotlivé kombinace HSP a PP.

Tabulka 1: Hodnoty CN II pro jednotlivé kategorie půdního pokryvu a hydrologické skupiny půd

<table>
<thead>
<tr>
<th>Typ</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orná půda (úhor/obilníny)</td>
<td>77/64</td>
<td>86/75.5</td>
<td>91/83.5</td>
<td>94/87.5</td>
</tr>
<tr>
<td>Chmelnice</td>
<td>40.8</td>
<td>63</td>
<td>74.8</td>
<td>80.8</td>
</tr>
<tr>
<td>Vinice</td>
<td>40.8</td>
<td>63</td>
<td>74.8</td>
<td>80.8</td>
</tr>
<tr>
<td>Sad</td>
<td>39.5</td>
<td>62</td>
<td>74.5</td>
<td>80.5</td>
</tr>
<tr>
<td>Trvalý travní porost</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Zahradka, park</td>
<td>49</td>
<td>69</td>
<td>79</td>
<td>84</td>
</tr>
<tr>
<td>Lesní půda se stromy</td>
<td>30</td>
<td>55</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>Královaté porost</td>
<td>32.5</td>
<td>57</td>
<td>70.5</td>
<td>77.5</td>
</tr>
<tr>
<td>Vodní plocha</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Antropogenizované plochy</td>
<td>81</td>
<td>88</td>
<td>91</td>
<td>93</td>
</tr>
</tbody>
</table>
Hodnoty CN II pro jednotlivá navržená opatření byly určeny podle originální metodiky (SCS, 1986) tak, že jim byly přiřazeny hodnoty CN podle charakterově nejbližší kategorii půdního pokryvu. Rozdíly v hodnotách CN oproti původnímu stavu udávají změnu v odtokových poměrech způsobené daným typem opatření, výsledné hodnoty jsou zobrazeny v tabulce 2. Hodnoty -1 označují opatření modelovaná jiným způsobem, než změnou CN.

1.1.2 Hydrologický model Bilan

Vstupem do modelu jsou denní či měsíční:

- srážkové úhrny [mm]
- průměrné teploty [st. C]
- průměrná vlhkost vzduchu [%]
- pozorované odtokové výsky [mm]
- užívání vody
- potenciální evapotranspirace [mm]

Pro hodnocení se využilo přístupu práce (Máca et al., 2016), kde pro stanovení parametru Spa byl identifikován následující lineární model na základě krokové regrese:

\[Spa = 0,71S_3 + 88,91D_d -8,89St + 65,76, \]

(1)
kde hlavní soubor deskriptorů je tvořen S_3 maximální retencí pro II. typ předchozích vláhových podmínek [mm]; D_d je hustota říční sítě povodí [km/km²] a St průměrný sklon říční sítě v [%]. Celý soubor představuje statisticky významné vstupní veličiny, což bylo potvrzeno výsledky F testu a t-testů, koeficient determinace lineárního modelu je roven 0,33.

Pro parametr Grd byl krokovou regresí stanoven následující lineární model:

$$Grd = 0,02St - 0,003S_{max} + 0,23,$$ \hspace{1cm} (2)

kde soubor deskriptorů je tvořen St průměrným sklonem říční sítě v [%], S_{max} maximálním lokálním sklonem v povodí v [%]. Opět výsledný model obsahuje statisticky významné vysvětlující geomorfologické veličiny podle F testu a t-testů, koeficient determinace je roven 0,17.

Pro samotné stanovení parametrů modelu byly vypočteny pro jednotlivá povodí hydrogeomorfologické charakteristiky jako:

- hustota říční sítě,
- průměrný sklon říční sítě,
- sklonitost povodí,

které jsou také vstupem pro odvození parametrů hydrologického modelu.

1.1.3 Model HEC-HMS

Pro určení výsledného odtoku z příčinné srážky je nutné hyetogram efektivní srážky získaný metodou SCS-CN transformovat do odtokové odezvy. V HMS lze k tomuto účelu využít opět
1. ÚVOD

Modelování přírodně blízkých opatření - Kolešovický potok

řadu metod, nejznámější je pravděpodobně metoda jednotkového hydrogramu. Jedná se o jedno- či víceparametrickou matematickou funkci rozkládající jednorázový srážkový impuls do odtokové vlny. Parametry určující tvar hydrogramu lze odvodit často z hydro-morfologických charakteristik povodí, například maximální délky odtokové dráhy a průměrného sklonu povodí.

Pro určení dopadů navržených opatření na extrémní odtoky byly v HMS sestaveny modely povodí ve všech řešených lokalitách a to ve dvou variantách – před a po realizaci opatření. Podle velikosti povodí a umístění případných retenčních prvků na vodních tocích sestával model z jednoho až šesti dílčích podpovodí. Pokud realizaci navrženého opatření došlo ke změně hydrologického povodí, byla tato skutečnost v modelu zahrnutá rovněž reflektována rozšířením plochy zdrojových povodí. Pro určení objemu odtoku byly použity průměrné hodnoty CN II spočtené dle 1 a 2, u orné půdy pak byly použity hodnoty pro nejvíce rizikový scénář, tedy holý úhor. Pro transformaci odtoku byla zvolena metoda SCS jednotkového hydrogramu, která vyžaduje pouze jeden parametr, dobu zpoždění, určenou z hodnoty CN II, maximální délky odtokové dráhy a průměrného sklonu povodí. Poslední dvě jmenované hodnoty byly určeny na základě DMT z rozlišením 10 m s využitím hydrologických nástrojů v prostředí ArcGIS.

Všechny modely povodí byly zatíženy sadou šestihodinových návrhových srážek s dobou opakování N = 2, 5, 10, 20 a 50 let a to v několika variantách průběhu intenzity srážky. Návrhové úhrny byly určeny individuálně pro každé povodí, ale shodně pro všechna dílčí podpovodí v rámci řešeného povodí. Úhrny byly získány pomocí webového procesového služby (WPS) poskytované pracovištěm ČVUT http://rain.fsv.cvut.cz/webapp/webove-sluzby/.

Krátkodobé srážky, které jsou nejčastější příčinou extrémních odtoků z malých povodí, se vyznačují značnou časovou variabilitou průběhu. (Müller et al., 2017). Odvodili na území ČR šest typických průběhů šestihodinových srážek A–F včetně četnosti jejich výskytu v závislosti na poloze a době opakování. Stejně jako návrhové úhrny byly tyto četnosti výskytu ve všech povodích získány s využitím zmíněné WPS služby. Pro modelování v HMS pak byly vybrány typy průběhů s významným zastoupením (více než 17%−) při dvou a více dobách opakování. Ve většině případů se jedná o průběhy typické pro přívalové srážky, pouze typ F je charakteristický pro frontální události a předběžné analýzy předchozích podmínek ukazují na častý příchod tohoto typu srážky do již nasycených podmínek. Proto byly srážky s průběhy A–E použity na modely povodí s průměrným stavem předchozího nasycení (CN II), zatímco pokud se v dané lokalitě častěji vyskytovala srážka typu F, byl použit vyšší stav nasycení (CN III).

V modelování odezvy povodí na extrémní srážky byly zohledněny významné retenční prvky – větší rybníky, vodní nádrže (současné i navržené) a navržené suché nádrže. Výpočet transformace umožňuje HMS na základě definice výpustních objektů a křivek zásobní funkce
nádrže či zatopených ploch. Objekty byly specifikovány orientačně na základě dimenzí typických pro daný typ stavby, případně odhadem dle ortofoto snímku. Zásobní funkce nádrže byly odvozeny v GIS na základě DMT a mapových podkladů. V případě navržených opatření na stávajících VN byla uvažována redukovaná výchozí výchozí hladina v nádrži v úrovni 20 cm pod hranou přelivu.

Posledním typem modelovaného opatření je revitalizace vodního toku a přilehlé nivy. Pro transformaci odtokové vlny ve vodním toku využívá HMS jednoduchou hydrologickou metodu Muskingum-Cunge. Pro definici transformace je nutné zadat délku a sklon říčních úseků, geometrii koryta a jeho hydraulické drsnosti. Délka a sklon byly určeny v GIS, geometrie byla definována zjednodušeně jako jednoduché kapacitní lichoběžníkové koryto pro ovlněné úseky toku a jako složené lichoběžníkové koryto s širokými bermami pro přírodní blízké úseky. Jako příslušné výchozí drsnosti byly použity hodnoty 0.025, respektive 0.025 či 0.03. Pokud byla v povodí navržena revitalizace vodního toku, byla v daném úseku o 30% navýšena délka, příslušným způsobem snížen podélní sklon, příčný profil změněn na přírodní blízkou variantu a zvýšena hydraulická drsnost na 0.03 či 0.035.

1.1.4 Model HYPE

HYPE je semidistribuovaný open-source hydrologický model (Arheimer et al., 2012), který funguje na bázi fragmentace povodí na subpovodí, která jsou dále rozdělena do skupin hydrologicky responzivních jednotek (HRJ), které jsou výsledkem kombinace rastrových vrstev, jmenovité vrstva digitálního modelu terénu, vrstva sklonitosti, vrstva krajinného krytu, vrstva základních hydropedologických ukazatelů (hloubka hydrologicky aktivní vrstvy půdy a skeletovitost půdy) a volitelně v rámci modelování kvality vody vrstva plodinových map popřípadě drenážních systémů. Jednotlivé HRJ mají unikátní hydrologický režim, jež je ovládán příslušnými parametry modelu. HRJ vstupují do modelu ve formě procentuálního zastoupení každé HRJ v rámci jednotlivých povodí. Model uvažuje až tři půdní vrstvy s rozdílnými hloubkami pro přesnější simulaci pohybu nutrientů půdy. Model pracuje se třemi skupinami parametrů, které jsou vázány buď globálně nebo na druh krajinného pokryvu nebo na typ půdy.

Kromě zmiňovaných rastrových vstupů jsou dále vstupem do modelu charakteristiky vodních děl, zejména těch manipulovaných, jmenovité hloubka, objem, plocha, typ vodní nádrže, průměrný odtok z nádrže, minimální zůstatkový odtok z nádrže a řada dalších. Vstupem do modelu je také procentuální zastoupení vodních ploch na povodí, které bylo odvozeno z vektorové vrstvy nádrží z databáze DIBAVOD. Stejně tak délka hlavního toku a délka vedlejších toků. Protože na experimentálních lokalitách nejsou k dispozici údaje o průtocích ani záznamy o kvalitě vody, byly vybrány analogony (povodí s podobnými charakteristikami
vlastnostmi, která měla k dispozici buď měření průtoků, nebo údaje o kvalitě vody, a na
ktéřá byl model kalibrován), na které byly přeneseny parametry modelu z experimentálních
lokalit. Poněvadž zatím nebylo známo uskupení pěstovaných rostlin v daných experimentálních
lokalitách, byly aplikovány standardní hodnoty pro obecnou plodinu, kterou byla zvolena
obilovina.

Z důvodu chybějících údajů pro jednotlivé lokality (viz výše), bylo modelování vlivu
adaptačních opatření na jakost vody provedeno formou citlivostní analýzy vnitřních
komponent modelu, které lze považovat za formy některých adaptačních opatření.

Zmiňovanými komponenty byly:

1. změna struktury půdy: uvažována záměna jemnozrnné půdy za půdu hrubozrnnou,
a to v pětiprocentním kroku, jinými slovy v každém kroku bylo z povodí odebráno 5 %
půdy jemnozrnné a přidáno 5 % půdy hrubozrnné.

2. změna krajinného krytu (landuse): uvažována záměna orné půdy za luční porost,
a to v pětiprocentním kroku, jinými slovy v každém kroku bylo z povodí odebráno 5 %
orné půdy a přidáno 5 % lučního porostu.

3. změna v množství dávkovaných hnojiv: bylo uvažováno odečítání v desetipro-
centním kroku od standartního dávkování, dokud dávkování nebylo rovno 0 % standartní
dávky a naopak přičítání k standartnímu dávkování dokud dávkování nebylo rovno 200
% standartní dávky.

4. změna v množství atmosférické (suché i mokré) depozice dusíku: bylo
uvahaováno odečítání ve dvacetipětiprocentním kroku od standartních hodnot
atmosférické depozice, dokud depozice nebyla rovna 0 % standartní depozice a naopak
přičítání k standartní hodnotě atmosférické depozice dokud depozice nebyla rovna 200
% standartní depozice.

5. změna teploty ovzduší o 2 st. C:¹ bylo uvažováno zvýšení veškeré vstupní teploty
do modelu o 2 st. C.

2 Modelování

Zájmové území se nachází na katastru obce Senomaty v okrese Rakovník a tvoří jej povodí
Kolešovického potoka. Plocha povodí činí 52,3 km², průměrná nadmořská výška povodí

¹Spíše než jako adaptační opatření byla tato změna zavedena za účelem zjištění citlivosti modelu na zvýšení
teploty v rámci jakosti vody.
ležícího v severní části Středolabské tabule 400 m n.m. V území s dlouhodobě pasivní vodní bilancí byl v souladu s Generelem vodního hospodářství krajiny ČR a očekávanými dopady změny klimatu navržen nový zdroj povrchové vody v podobě malé vodní nádrže Šenomaty se sypanou zemní hrází.

Umístění řešené lokality je zobrazeno na mapě 1 a satelitní mapa, kde je možné sledovat krajinní pokryv je poté na mapě 2. Navržená společná zařízení jsou na obrázku ??.
2. MODELOVÁNÍ
Modelování přírody blízkých opatření - Kolešovický potok

Obrázek 2: Umístění povodí (satelitní mapa)

Obrázek 3: Povodí Kolešovického potoka s uzávěrovým profilem v hrázi MVN Šenomaty
Základní charakteristiky hodnoceného povodí Kolešovický potok:

- plocha povodí: 52.344 km²
- průměrný srážkový úhrn: 504.9 mm
- průměrná teplota: 8.25 st.C
- průměrná roční potenciální evapotranspirace: 656.32 mm
- průměrná nadmořská výška: 392.66 mn.m.
- průměrná sklonitost: 2.1 %

2.1 Opatření

V zájmové lokalitě Kolešovický potok jsou navržena tato opatření:
2. MODELOVÁNÍ
Modelování přírodně blízkých opatření - Kolešovický potok

2.1.1 Výstavba malé vodní nádrže (odkaz na katalog)

Obrázek 4: Vizualizace MVN Senomaty na Kolešovickém potoce: sypaná zemní hráz o výšce 6,8 m, celkový objem nádrže 670 725 m³, plocha nádrže 25,6 ha, nadlepšení průtoku 21,4 l/s (zdroj: Povodí Vltavy, www.nase-voda.cz)

2.2 Klima

2Boxplot neboli krabicový graf či krabicový diagram jeden ze způsobů grafické vizualizace numerických dat pomocí jejich kvartilů. Střední krabicová část diagramu je shora ohraničena 3. kvartilem, zespodu 1. kvartilem a mezi nimi se nachází linie vyznačující medián.
2. MODELOVÁNÍ Modelování přírodě blízkých opatření - Kolešovický potok

2.3 Návrhové srážky

Průběh návrhové srážky významně ovlivňuje hydrologickou odezvu. Rozmanitost průběhů je velmi značná a z těchto důvodů byly použity šestichodinové hyetogramy, které jsou uvedeny na následujícím obrázku. Tvarové hyetogramů jsou označeny písmeny A až F, kdy tvary A, B, E a F mají jednoduchý průběh.

Obrázek 7: Návrhové srážky s dobou opakování 2, 5, 10, 20 a 50 let
2. MODELOVÁNÍ

Modelování přírodě blízkých opatření - Kolešovický potok

2.4 Analýza trendů

2. MODELOVÁNÍ

Modelování přírodně blízkých opatření - Kolešovický potok

Obrázek 10: Analýza trendů srážek a teplot vzduchu pomocí Mann-Kendall testu

Obrázek 11: Hodnoty CN pro zájmové území a různé vláhové podmínky

Na obrázku 11 jsou zobrazeny hodnoty CN I, CN II a CN III pro současné podmínky (bez navrhovaných opatření) a různé vláhové podmínky.

2.5 Výsledky modelování hydrologické bilance modelem Bilan

2. MODELOVÁNÍ

Modelování přírodě blízkých opatření - Kolešovický potok

Obrázek 12: Průměrné měsíční odtokové výšky ve formě boxplotů pro jednotlivé varianty hodnocení

2.6 Výsledky modelování modelem HEC-HMS

V zájmovém povodí Kolešovického potoka byl v souladu s Generelem vodního hospodářství krajin ČR a očekávanými dopady změny klimatu navržen nový zdroj povrchové vody v podobě malé vodní nádrže Senomaty. Jak ukazuje ??, z hlediska průběhů krátkodobých srážek v lokalitě převažuje dvouvrhová srážka typu C a významné zastoupení mají dále intenzivní srážka typu B a rovnoměrný typ E. Ovlivnění odtokové odezvy na extrémní návrhové srážky s těmito průběhy a s dobami opakování 2-50 let ukazuje 15 a procentuální snížení kulminačních průtoků, objemu odtoku do konce simulace a posun kulminace je vyčíslen v 3.

Uvedené grafy a hodnoty naznačují, že navrhovaná nádrž, pokud by byl zajištěn dostatečný ovladatelný retenční prostor, má značný potenciál snížit objem odtoku v časovém úseku simulace (11 h) i kulminační průtoky. Z uvedených hodnot redukce objemu se jeví redukce objemu jako značná (snížení až o 65 % v případě doby opakování 5 let), ale toto snížení je nutné vztahovat pouze k době simulace. Ta byla poměrně krátká a během ní nebyl zcela dokončen výpočet transformace odtokových vln ve vodní nádrži. Výsledné redukce objemu celé odtokové
2. MODELOVÁNÍ

Modelování přírodě blízkých opatření - Kolešovický potok

Obrázek 13: Změny měsíčních odtokových výšek ve formě boxplotů (před opatřením a po realizaci opatření)

vlny jsou ve skutečnosti nulové, neboť v povodí nebyla navržena žádná opatření pro snížení objemu odtoku, posuzovaná nádrž jej pouze transformuje. Dále redukce kulminací průtoků se pohybuje od snížení o 76 % pro N = 2 roky s klesající tendencí po 59 % při n = 50 let. Rovněž při posuzování těchto hodnot je třeba opatrnosti, neboť jsou důsledkem jednak v praxi neobvykle vysokého retenčního prostoru (hladina v úrovni 20 cm pod hranou bezpečnostního přelivu) a dále orientačně zvolených parametrů výpustních objektů. Přesnější posouzení by vyžadovalo detailnější technickou studii. Ze stejného důvodu je nutné s opatrností posuzovat i doby zpoždění kulminací, které jsou transformací v nádrži podstatně ovlivněny. Z hlediska průběhu posuzovaných návrhových srázek je mírně kritičtější nejintenzivnější typ B, nad ostatními dominuje zejména u vyšších dob opakovaní.

2.7 Výsledky modelování modelem HYPE

Obrázky 16, 17, 18 a 19 sumarizují citlivostní analýzu a dávají jasnou představu o tom jaká komponenta modelu má vliv na tu kterou koncentraci modelovaných látek. Na ose Y lze vidět danou komponentu modelu (adaptační opatření) na ose X pak procentuální změnu dané komponenty, přičemž hodnota (resp. barva) dlaždice udává průměrnou hodnotu změny od výchozí modelované koncentrace. Modrá barva značí pokles od výchozí koncentrace, naopak
Obrázek 15: Návrhové průtoky dle N - letostí pro jednotlivé typy vln (čárkovaně-před opatřením, plně-po opatření)
červená značí nárůst od výchozí koncentrace a bílá barva reprezentuje nulovou změnu.

Hodnotový rozsah je pro každou látku specifický, poněvadž jejich koncentrace v povodích, respektive v tocích je rozdílná. Obecně lze vyvozovat, že s přechodem z jemnozrnné půdy na půdu s hrubší strukturou klesá koncentrace všech čtyř modelovaných látek (jmenovitě anorganický dusík, organický dusík, pevný fosfor a rozpustný fosfor). Přechod z orné půdy na luční porost způsobuje pokles koncentrace dusíku a rozpustného fosforu, nikoliv však pevného fosforu. Dávkování hnojiv má vliv pouze na fosfor v obou fázích a jejich výsledná koncentrace kladně koreluje s mírou dávkování, dusík zůstává neměnný. Stejně tak atmosférická depozice dusíku logicky kladně koreluje s mírou koncentrace dusíku v tocích. Zvýšení teploty o 2 st. v zapříčinění nárůst pevného fosforu a organického dusíku a naopak pokles rozpustného fosforu a anorganického dusíku.

Obrázek 16: Anorganický dusík
2. MODELOVÁNÍ

Modelování přírode blízkých opatření - Kolešovický potok

![Graph 1](image1.png)

Obrázek 17: Organický dusík

![Graph 2](image2.png)

Obrázek 18: Pevný fosfor
3. ZÁVĚR

Na lokalitě Kolešovický potok je dlouhodobě výrazně negativní bilance (srážky-potenciální evapotranspirace), což vede k nízkým odtokovým výškám, a to především v letních obdobích. Navržená a realizovaná opatření nebude mít dopad na hydrologický režim. Nová vodní nádrž bude schopna částečně mírnit dopady hydrologického sucha.

Navržená nádrž, pokud by byl zajištěn dostatečný ovladatelný retenční prostor, má značný potenciál snížit objem odtoku v časovém úseku simulace (11 h) i kulminacní průtoky. Z uvedených hodnot redukce objemu se jeví redukce objemu jako značná (snížení až o 65 % v případě doby opakování 5 let), ale toto snížení je nutné vztahovat pouze k době simulace. Ta byla poměrně krátká a během ní nebyl zcela dokončen výpočet transformace odtokových vln ve vodní nádrži. Výsledné redukce objemu celé odtokové vlny jsou ve skutečnosti nulové, neboť v povodí nebyla navržena žádná opatření pro snížení objemu odtoku, posuzovaná nádrž jej pouze transformuje. Dále redukce kulminacních průtoků se pohybuje od snížení o 76 % pro N = 2 roky s klesající tendencí po 59 % při n = 50 let.

Obecně lze vyvozovat, že s přechodem z jemnozrnné půdy na půdu s hrubší strukturou klesá
koncentrace všech čtyř modelovaných látek (jmenovitě anorganický dusík, organický dusík, pevný fosfor a rozpustný fosfor). Přechod z orné půdy na luční porost zapříčinuje pokles koncentrace dusíku a rozpustného fosforu, nikoliv však pevného fosforu. Dávkování hnojiv má vliv pouze na fosfor v obou fázích a jejich výsledná koncentrace kladně koreluje s mírou dávkování, dusík zůstává neměnný.

References

Müller, M., Kašpar, M., Bližňáček, V. (2017) Rainfall time structure variability depending on precipitation depths and duration.

Tabulka 2: Hodnoty CN II pro jednotlivá opatření a hydrologické skupiny půd

<table>
<thead>
<tr>
<th>Opatření</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zasakovací pásy</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Svodný průleh</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Svodný příkop</td>
<td>81</td>
<td>88</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td>Vyloučení erozně nebezpečných plodin</td>
<td>74</td>
<td>83</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>Protierozně agrotechnika -širokoř. kultury</td>
<td>64</td>
<td>74</td>
<td>81</td>
<td>85</td>
</tr>
<tr>
<td>Vyloučení širokořádkových plodin méněnější</td>
<td>75.5</td>
<td>84.5</td>
<td>89.5</td>
<td>92</td>
</tr>
<tr>
<td>Vyloučení erozně nebezpečných plodin a protierozně agrotechnologie</td>
<td>74</td>
<td>83</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>Plošné TTP (zatravnění plošné dle HPJ)</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Stabilizace drah soustředěného odtoku</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Ochranné pásy podél vodních toků a vod. ploch</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Zatrvnění na speciálních kulturách</td>
<td>37.6</td>
<td>61.3</td>
<td>73.6</td>
<td>79.9</td>
</tr>
<tr>
<td>Plošné TTP (zatravnění plošné dle sklonu)</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Plošné TTP (zatravnění plošné dle eroze)</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Polní cesta zpevněná s příkopem</td>
<td>83</td>
<td>89</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>Ochranný sad, vinice</td>
<td>37.6</td>
<td>61.3</td>
<td>73.6</td>
<td>79.9</td>
</tr>
<tr>
<td>Zatrvnění</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Agrotechnika méněnější</td>
<td>74</td>
<td>83</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>Agrotechnika přísneňší</td>
<td>74</td>
<td>83</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>Mez, hrážka</td>
<td>32.5</td>
<td>57</td>
<td>70.5</td>
<td>77.5</td>
</tr>
<tr>
<td>Záchytný průleh</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Větrolam</td>
<td>30</td>
<td>55</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>Mokřad</td>
<td>83</td>
<td>89</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>Vodní nádrž nová</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Biocentrum</td>
<td>30</td>
<td>55</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>Biokoridor</td>
<td>30</td>
<td>55</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>Interakční prvek</td>
<td>30</td>
<td>55</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>Opatření na stávajících VN</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Přehrážka</td>
<td>83</td>
<td>89</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>Revitalizace toku a nivy</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Suchá nádrž</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
</tbody>
</table>
Tabulka 3: Vyhodnocení krátkodobých srážko-odtokových epizod

<table>
<thead>
<tr>
<th>N(roky)</th>
<th>TYP</th>
<th>Q<sub>pre</sub></th>
<th>Q<sub>po</sub></th>
<th>V<sub>pre</sub></th>
<th>V<sub>po</sub></th>
<th>T<sub>pre</sub></th>
<th>T<sub>po</sub></th>
<th>dQ</th>
<th>dV</th>
<th>Posun</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>7.40</td>
<td>1.80</td>
<td>78 082</td>
<td>33 611</td>
<td>16:05</td>
<td>18:50</td>
<td>-76%</td>
<td>-57%</td>
<td>165</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>7.00</td>
<td>1.80</td>
<td>77 414</td>
<td>31 317</td>
<td>16:25</td>
<td>19:15</td>
<td>-74%</td>
<td>-60%</td>
<td>170</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>7.10</td>
<td>1.80</td>
<td>77 385</td>
<td>31 395</td>
<td>16:30</td>
<td>19:15</td>
<td>-74%</td>
<td>-59%</td>
<td>165</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>19.80</td>
<td>4.40</td>
<td>208 122</td>
<td>76 742</td>
<td>15:50</td>
<td>18:40</td>
<td>-78%</td>
<td>-63%</td>
<td>170</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>18.50</td>
<td>4.40</td>
<td>206 186</td>
<td>71 714</td>
<td>16:10</td>
<td>19:00</td>
<td>-76%</td>
<td>-65%</td>
<td>170</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>18.40</td>
<td>4.40</td>
<td>206 779</td>
<td>72 295</td>
<td>16:10</td>
<td>19:00</td>
<td>-76%</td>
<td>-65%</td>
<td>170</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>31.10</td>
<td>8.60</td>
<td>325 460</td>
<td>142 511</td>
<td>15:40</td>
<td>18:15</td>
<td>-72%</td>
<td>-56%</td>
<td>170</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>28.40</td>
<td>8.40</td>
<td>322 641</td>
<td>134 242</td>
<td>16:00</td>
<td>18:35</td>
<td>-70%</td>
<td>-58%</td>
<td>155</td>
</tr>
<tr>
<td>10</td>
<td>E</td>
<td>28.50</td>
<td>8.50</td>
<td>323 643</td>
<td>135 083</td>
<td>16:00</td>
<td>18:35</td>
<td>-70%</td>
<td>-58%</td>
<td>155</td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td>44.40</td>
<td>14.30</td>
<td>463 656</td>
<td>233 706</td>
<td>15:35</td>
<td>17:55</td>
<td>-68%</td>
<td>-50%</td>
<td>140</td>
</tr>
<tr>
<td>20</td>
<td>C</td>
<td>39.90</td>
<td>14.00</td>
<td>460 066</td>
<td>222 113</td>
<td>15:55</td>
<td>18:20</td>
<td>-65%</td>
<td>-52%</td>
<td>145</td>
</tr>
<tr>
<td>20</td>
<td>E</td>
<td>40.40</td>
<td>14.20</td>
<td>461 341</td>
<td>223 071</td>
<td>15:55</td>
<td>18:15</td>
<td>-65%</td>
<td>-52%</td>
<td>140</td>
</tr>
<tr>
<td>50</td>
<td>B</td>
<td>64.20</td>
<td>23.80</td>
<td>668 037</td>
<td>383 003</td>
<td>15:30</td>
<td>17:40</td>
<td>-63%</td>
<td>-43%</td>
<td>130</td>
</tr>
<tr>
<td>50</td>
<td>C</td>
<td>56.40</td>
<td>23.10</td>
<td>663 552</td>
<td>367 353</td>
<td>15:50</td>
<td>18:00</td>
<td>-59%</td>
<td>-45%</td>
<td>130</td>
</tr>
<tr>
<td>50</td>
<td>E</td>
<td>57.90</td>
<td>23.50</td>
<td>664 789</td>
<td>368 031</td>
<td>15:50</td>
<td>18:00</td>
<td>-59%</td>
<td>-45%</td>
<td>130</td>
</tr>
</tbody>
</table>