Typová lokalita Ratíškovice a modelování přírodě blízkých opatření modely Bilan a HEC-HMS

Adam Vizina, Miriam Dzuráková a kol.
Název a sídlo organizace:
Výzkumný ústav vodohospodářský T. G. Masaryka, v.v.i., Podbabská 2582/30 Praha 6 160 00

Zadavatel:
Odbor ochrany vod

Zahájení a ukončení úkolu:
duben 2017 - duben 2018

Místo uložení zprávy:
VÚV TGM, v.v.i.

Ředitel:
Ing. Tomáš Urban

Náměstek ředitele pro výzkumnou a odbornou činnost:
Ing. Libor Ansorge, Ph.D.

Vedoucí odboru:
Ing. Anna Hrabáňková

Řešitelé:
Obsah

1 Úvod

1.1 Metodika řešení .. 3
 1.1.1 Metoda CN křivek .. 3
 1.1.2 Hydrologický model Bilan 5
 1.1.3 Model HEC-HMS ... 6
 1.1.4 Model HYPE ... 8

2 Modelování

2.1 Opatření ... 11
 2.1.1 Ochranné nádrže (odkaz na katalog) 11
 2.1.2 Svodné průhledy (odkaz na katalog) 13
 2.1.3 Větrolamy .. 14
 2.1.4 Organizační opatření – vyloučení širokořádkových plodin (odkaz na katalog) 14
 2.1.5 Trvalé zatravnění (odkaz na katalog) 14
 2.1.6 Opatření na speciálních kulturách (odkaz na katalog) 14

2.2 Klima .. 15

2.3 Návrhové srážky .. 16

2.4 Analýza trendů ... 18

2.5 Výsledky modelování hydrologické bilance modelem Bilan 19

2.6 Výsledky modelování modelem HEC-HMS 19

2.7 Výsledky modelování modelem HYPE 22

3 Závěr .. 26
<table>
<thead>
<tr>
<th>Seznam obrázků, map a grafů</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Umístění povodí</td>
</tr>
<tr>
<td>2 Umístění povodí (satelitní mapa)</td>
</tr>
<tr>
<td>3 Navržená společná zařízení na ortofoto (Zdroj: ČÚZK)</td>
</tr>
<tr>
<td>4 Lokalita navržené nádrže N1</td>
</tr>
<tr>
<td>7 Návrhové srážky s dobou opakování 2, 5, 10, 20 a 50 let</td>
</tr>
<tr>
<td>8 Průběh 5-min intenzit návrhových srážek</td>
</tr>
<tr>
<td>10 Analýza trendů srážek a teplot vzduchu pomocí Mann-Kendall testu</td>
</tr>
<tr>
<td>9 Rozdělení jednotlivých typů návrhové srážky</td>
</tr>
<tr>
<td>11 Hodnoty CN pro zájmové území a různé vláhové podmínky</td>
</tr>
<tr>
<td>12 Průměrné měsíční odтокové výšky ve formě boxplotů pro jednotlivé varianty hodnocení</td>
</tr>
<tr>
<td>13 Změny měsíčních odtokových výšek ve formě boxplotů (pře opatřením a po realizaci opatření)</td>
</tr>
<tr>
<td>15 Návrhové průtoky dle N - letostí pro jednotlivé typy vln (čárkování-před opatřením, plně-po opatřením)</td>
</tr>
<tr>
<td>16 Anorganický dusík</td>
</tr>
<tr>
<td>17 Organický dusík</td>
</tr>
<tr>
<td>18 Pevný fosfor</td>
</tr>
<tr>
<td>19 Rozpustný fosfor</td>
</tr>
</tbody>
</table>
Seznam tabulek

1 Hodnoty CN II pro jednotlivé kategorie půdního pokryvu a hydrologické skupiny půd .. 4
2 Hodnoty CN II pro jednotlivá opatření a hydrologické skupiny půd .. 28
3 Vyhodnocení krátkodobých srážko-odtokových epizod .. 29
1. ÚVOD

Modelování přírodě blízkých opatření - Ratíškovice

1 Úvod

V předložené studii je rámcově kvantifikován vliv přírodě blízkých retenčních opatření na hydrologický systém jednotlivých povodí. Navržený postup umožňuje stanovit hodnoty parametrů modelů Bilan a HMS pro povodí, jehož hydrologický systém je ovlivněn plošnými a liniovými přírodě blízkými retenčními opatřením. Cílem je vyhodnocení jednotlivých opatření jak na dlouhodobý hydrologický režim, tak na extrémní odtoky v daných lokalitách. Hodnocení jednotlivých opatření bylo provedeno v následujících scénářích:

1. bez opatření - normální stav (pro dlouhodobou bilanci)
2. bez opatření - kritický stav (pro extrémní odtoky)
3. navržená opatření - normální stav (pro dlouhodobou bilanci)
4. navržená opatření - kritický stav (pro extrémní odtoky)

1.1 Metodika řešení

Pro hodnocení ovlivnění odtokového režimu byla použita metoda SCS-CN v kombinaci se dvěma hydrologickými modely. Posouzení vlivu na dlouhodobou hydrologickou bilanci bylo provedeno pomocí modelu Bilan, pro posouzení vlivu na extrémní odtoky byl využit konceptuální model HMS a pro hodnocení kvality vody model HYPE.

1.1.1 Metoda CN křivek

Metoda SCS-CN je v ČR známa jako metoda odtokových křivek (CN z anglického Curve Number) je založena na experimentálním výzkumu. Metoda je celosvětově oblibená vzhledem ke své jednoduchosti a stále se hojně využívá, přestože má mnohé teoretická omezení. Používá se ke stanovení velikosti průměrného odtoku (povrchový odtok plus rychlý podpovrchový odtok) na základě znalostí úhrnu příčinné srážky a hydrologických vlastností půdy a půdního pokryvu. Metoda byla testována a ověřena mnohými výzkumy a studiemi odtokových poměrů. V malých povodích existuje dobrá korelace mezi naměřenou výškou odtoku a výškou odtoku stanovenou metodou SCS-CN. Průměrné hodnoty CN pro libovolné území lze snadno určit z běžných datových podkladů s využitím nástrojů GIS. Metoda CN křivek může být použita při navrhování vodohospodářských opatření a drobných staveb nacházejících se v ploše povodí nebo na vodních tocích do velikosti povodí 5 km² (Havlík a Fremrová, 2010). Mezi opatření a stavby prováděných v ploše povodí patří např. technická protierozní opatření jako jsou
dráhy soustředěného povrchového odtoku, zatrvněné údolnice, průlehy, záchytné příkopy nebo zasakovací pásy, mezi typické stavby na malých vodních tocích pak patří malé vodní nádrže nebo suché nádrže (Smelík, 2016).

Metoda byla odvozena na zemědělsky využívaných povodích, jejichž plocha není větší než 10km². Zejména pro velká povodí je potřeba u výsledků výpočtu počítat se značnými nepřesnostmi. Dalším faktorem ovlivňujícím přesnost metody zejména pro extremální úlohy je časové rozložení intenzit srážek, které metoda CN nezohledňuje a pro jakýkoliv zvolený průběh srážky dává totožný objem odtoku. Průměrná hodnota CN se pro konkrétní území určuje jako plošný vážený průměr hodnot pro jednotlivé pozemky. Tato detailní čísla se stanovují obvykle podle metodických tabulek. Pro potřeby projektu byly hodnoty CN převzaty z originální metodiky (SCS, 1986). Pro přiřazení CN k elementárním odtokovým plochám je potřeba znát druh půdního pokryvu (PP) a hydrologickou skupinu půd (HSP). Datová vrstva PP byla odvozena ze ZABAGED se zjednodušením na 10 kategorií povrchu. Pro určení hydrologické skupiny půd byla využita volně dostupná data BPEJ pro zemědělskou půdu a vrstva Lesních typů od ÚHÚL přeeklifikovaná na HSP dle metodiky (Macků, 2012). Tabelované hodnoty CN se zpravidla vztahují k průměrnému vlhkostnímu stavu danému indexem předchozí srážky (IPS2), pro potřeby extrémního modelování byly hodnoty CN II dále přepočteny i pro nasycený stav daný indexem IPS3. Pro každé řešené území byly určeny průměrné hodnoty CN II a CN III, které byly následně přečísleny na jim příslušnou retenci. Tyto hodnoty jsou nezbytné pro stanovení parametru Spa v hydrologickém modelu BILAN a objem průměrného odtoku v modelu HMS. V následující tabulce 1 jsou uvedeny tabelované CN II hodnoty pro jednotlivé kombinace HSP a PP.

<table>
<thead>
<tr>
<th>Typ</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orná půda (úhor/obilniny)</td>
<td>77/64</td>
<td>86/75.5</td>
<td>91/83.5</td>
<td>94/87.5</td>
</tr>
<tr>
<td>Chmelnice</td>
<td>40.8</td>
<td>63</td>
<td>74.8</td>
<td>80.8</td>
</tr>
<tr>
<td>Vinice</td>
<td>40.8</td>
<td>63</td>
<td>74.8</td>
<td>80.8</td>
</tr>
<tr>
<td>Sad</td>
<td>39.5</td>
<td>62</td>
<td>74.5</td>
<td>80.5</td>
</tr>
<tr>
<td>Trvalý travní porost</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Zahradka, park</td>
<td>49</td>
<td>69</td>
<td>79</td>
<td>84</td>
</tr>
<tr>
<td>Lesní půda se stromy</td>
<td>30</td>
<td>55</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>Krůvinaté porost</td>
<td>32.5</td>
<td>57</td>
<td>70.5</td>
<td>77.5</td>
</tr>
<tr>
<td>Vodní plocha</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Antropogenizované plochy</td>
<td>81</td>
<td>88</td>
<td>91</td>
<td>93</td>
</tr>
</tbody>
</table>
Hodnoty CN II pro jednotlivá navržená opatření byly určeny podle originální metodiky (SCS, 1986) tak, že jim byly přiřazeny hodnoty CN podle charakterově nejbližší kategorii půdního pokryvu. Rozdíly v hodnotách CN oproti původnímu stavu udávají změnu v odtokových poměrech způsobené daným typem opatření, výsledné hodnoty jsou zobrazeny v tabulce 2. Hodnoty -1 označují opatření modelovaná jiným způsobem, než změnou CN.

1.1.2 Hydrologický model Bilan

Vstupem do modelu jsou denní či měsíční:

- srážkové úhrny [mm]
- průměrné teploty [st. C]
- průměrná vlhkost vzduchu [%]
- pozorované odtokové výšky [mm]
- užívání vody
- potenciální evapotranspirace [mm]

Pro hodnocení se využilo přístupu práce (Máca et al., 2016), kde pro stanovení parametru Spa byl identifikován následující lineární model na základě krokové regrese:

\[
Spa = 0,71S_3 + 88,91D_d - 8,89St + 65,76, \tag{1}
\]
kde hlavní soubor deskriptorů je tvořen S_3 maximální retencí pro II. typ předchozích vláhových podmínek [mm]; D_d je hustota říční sítě povodí [km/km^2] a St průměrný sklon říční sítě v [%]. Celý soubor představuje statisticky významné vstupní veličiny, což bylo potvrzeno výsledky F testu a t-testu, koeficient determinace lineárního modelu je roven 0,33.

Pro parametr Grd byl krokovou regresí stanoven následující lineární model:

$$Grd = 0,02St -0,003S_{max} + 0,23,$$ \hspace{1cm} (2)

kde soubor deskriptorů je tvořen St průměrným sklonem říční sítě v [%], S_{max} maximálním lokálním sklonem v povodí v [%]. Opět výsledný model obsahuje statisticky významné vysvětlující geomorfologické veličiny podle F testu a t-testu, koeficient determinace je roven 0,17.

Pro samotné stanovení parametrů modelu byly vypočteny pro jednotlivá povodí hydrogeomorfologické charakteristiky jako:

- hustota říční sítě,
- průměrný sklon říční sítě,
- sklonitost povodí,

které jsou také vstupem pro odvození parametrů hydrologického modelu.

1.1.3 Model HEC-HMS

Pro hydrologickou praxi velmi dobře známý HEC-HMS je veřejně dostupný a bezplatně poskytovaný nástroj vyviněný v americkém Hydrologic Engineering Center. Jedná se o softwarové prostředí umožňující využití řady výpočetních modelů a metod, z nichž asi nejrozšířenější je metoda odtokových křivek SCS-CN. Výstupem metody je odtoková výška nebo také úhrn efektivní srážky. S využitím vstupního hyetogramu příčinné srážky lze s touto metodou odvodit i hyetogram efektivní srážky. Velkou nevýhodou této metody je, že hodnota výsledné odtokové výšky není závislá na časovém rozložení příčinné srážky. Odtoková výška ze dvou srážek s totožným úhrnom ale s průběhy např. v podobě rovnoměrného dešť nízké intenzity a přívalovou srážkou je rovněž totožná, což neodpovídá fyzikálním principům tvorby přímořského odtoku. Z tohoto důvodu je třeba opatrnosti při interpretaci výsledků modelu, neboť objemy odtoku i kulmainční průtoky mohou být u přívalových srážek podhodnoceny.

Pro určení výsledného odtoku z příčinné srážky je nutné hyetogram efektivní srážky získaný metodou SCS-CN transformovat do odtokové odezvy. V HMS lze k tomuto účelu využít opět
1. ÚVOD

Modelování přírodně blízkých opatření - Ratíškovice

řadu metod, nejznámější je pravděpodobně metoda jednotkového hydrogramu. Jedná se o jedno-
či vícepametrickou matematickou funkci rozkládající jednorázový srážkový impulz do
odtokové vlny. Parametry určující tvar hydrogramu lze odvodit často z hydro-morfologických
charakteristik povodí, například maximální délky odtokové dráhy a průměrného sklonu povodí.

Pro určení dopadů navržených opatření na extrémní odtoky byly v HMS sestaveny modely
povodí ve všech řešených lokalitách a to ve dvou variantách – před a po realizaci opatření.
Podle velikosti povodí a umístění případných retenčních prvků na vodních tocích sestával
model z jednoho až šesti dílcích podpovodí. Pokud realizací navrženého opatření došlo ke
změně hydrologického povodí, byla tato skutečnost v modelu zahrnujícím opatření rovněž
reflektována rozšířením plochy zdrojových povodí. Pro určení objemu odtoku byly použity
průměrné hodnoty CN II spočtené dle 1 a 2, u orné půdy pak byly použity hodnoty pro
nejvíce rizikový scénář, tedy hořší úhory. Pro transformaci odtoku byla zvolena metoda SCS
jednotkového hydrogramu, která vyžaduje pouze jeden parametr, dobu zpoždění, určenou
z hodnoty CN II, maximální délky odtokové dráhy a průměrného sklonu povodí. Poslední děvě
jmenované hodnoty byly určeny na základě DMT z rozlišením 10 m s využitím hydrologických
nástrojů v prostředí ArcGIS.

Všechny modely povodí byly zatíženy sadou šestihodinových návrhových srážek s dobou
opakování N = 2, 5, 10, 20 a 50 let a to v několika variantách průběhu intenzity srážky.
Návrhové úhry byly určeny individuálně pro každé povodí, ale shodně pro všechna dílčí
podpovodí v rámci řešeného povodí. Úhry byly získány pomocí webové procesové služby

Krátkodobé srážky, které jsou nejčastěji přičinou extrémních odtoků z malých povodí, se
vyznačují značnou časovou variabilitou průběhu. (Müller et al., 2017). Odvodili na území ČR
šest typických průběhů šestihodinových srážek A-F včetně četnosti jejich výskytu v závislosti
na poloze a době opakování. Stejně jako návrhové úhry byly tyto četnosti výskytu ve
všech povodích získány s využitím zmíněné WPS služby. Pro modelování v HMS pak byly
vybrány typy průběhů s významným zastoupením (více než 17%%) při dvou a více dobách
opakování. Ve většině případů se jedná o průběhy typické pro přívalové srážky, pouze typ F je
charakteristický pro frontální události a předběžné analýzy předchozích podmínek ukazují na
častý příchod tohoto typu srážky do již nasycených podmínek. Proto byly srážky s průběhy
A–E použity na modely povodí s průměrným stavem předchozího nasycení (CN II), zatímco
pokud se v dané lokalitě častěji vyskytovala srážka typu F, byl použit vyšší stav nasycení
(CN III).

V modelování odezvy povodí na extrémní srážky byly zohledněny významné retenční prvky –
větší rybníky, vodní nádrže (současné i navržené) a navržené suché nádrže. Výpočet
transformace umožňuje HMS na základě definice výpustních objektů a křivek zásobní funkce
nádrže či zatopených ploch. Objekty byly specifikovány orientačně na základě dimenzí typických pro daný typ stavby, případně odhadem dle ortofoto snímků. Zásobní funkce nádrže byly odvozeny v GIS na základě DMT a mapových podkladů. V případě navržených opatření na stávajících VN byla uvažována redukovaná výchozí výška v nádrži v úrovni 20 cm pod hranou přelivu.

Posledním typem modelovaného opatření je revitalizace vodního toku a přilehlé nivy. Pro transformaci odtokové vlny ve vodním toku využívá HMS jednoduchou hydrologickou metodu Muskingum-Cunge. Pro definici transformace je nutné zadat délku a sklon říčních úseků, geometrii koryta a jeho hydraulické drsnosti. Délka a sklon byly určeny v GIS, geometrie byla definována zjednodušeně jako jednoduché kapacitní lichoběžníkové koryto pro ovlivněné úseky toku a jako složené lichoběžníkové koryto s širokými bermami pro přírodě blízké úseky. Jako příslušné výchozí drsnosti byly použity hodnoty 0,025, respektive 0,025 či 0,03. Pokud byla v povodí navržena revitalizace vodního toku, byla v daném úseku o 30% navýšena délka, příslušným způsobem snížen podélý sklon, příčný profil změněn n přírodě blízkou variantu a zvýšena hydraulická drsnost na 0,03 či 0,035.

1.1.4 Model HYPE

HYPE je semidistribuovaný open-source hydrologický model (Arheimer et al., 2012), který funguje na bázi fragmentace povodí na subpovodí, která je dále rozdělena do skupin hydrologicky responzivních jednotek (HRJ), které jsou výsledkem kombinace rastrových vrstev, jmenovité vrstva digitálního modelu terénu, vrstva sklonitosti, vrstva krajinného krytu, vrstva základních hydropedologických ukazatelů (hloubka hydrologicky aktivní vrstvy půdy a skeletovitost půdy) a volitelně v rámci modelování kvality vody vrstva plodinových map popřípadě drenážních systémů. Jednotlivé HRJ mají unikátní hydrologický režim, jež je ovládán příslušnými parametry modelu. HRJ vstupují do modelu ve formě procentuálního zastoupení každé HRJ v rámci jednotlivých povodí. Model uvažuje až tři půdní vrstvy s rozdílnými hloubkami pro přesnější simulaci pohybu nutientů půdy. Model pracuje se třemi skupinami parametrů, které mají vázány buď globálně nebo na druh krajinného pokryvu nebo na typ půdy.

Kromě zmiňovaných rastrových vstupů jsou dále vstupem do modelu charakteristiky vodních děl, zejména těch manipulovaných, jmenovité hloubka, objem, plocha, typ vodní nádrže, průměrný odtok z nádrže, minimální zůstatkový odtok z nádrže a řada dalších. Vstupem do modelu je také procentuální zastoupení vodních ploch na povodí, které bylo odvozeno z vektorové vrstvy nádrží z databáze DIBAVOD. Stejně tak délka hlavního toku a délka vedlejších toků. Protože na experimentálních lokalitách nejsou k dispozici údaje o průtocích ani záznamy o kvalitě vody, byly vybrány analogony (povodí s podobnými charakteristickými
vlastnostmi, která měla k dispozici buď měření průtoků, nebo údaje o kvalitě vody, a na která byl model kalibrтовán), na které byly přeneseny parametry modelu z experimentálních lokalit. Poněvadž zatím nebylo známo uskupení pěstovaných rostlin v daných experimentálních lokalitách, byly aplikovány standardní hodnoty pro obecnou plodinu, kterou byla zvolena obilovina.

Z důvodu chybějících údajů pro jednotlivé lokality (viz výše), bylo modelování vlivu adaptačních opatření na jakost vody provedeno formou citlivostní analýzy vnitřních komponent modelu, které lze považovat za formy některých adaptačních opatření.

Zmiňovanými komponenty byly:

1. změna struktury půdy: uvažována záměna jemnozrnného půdy za půdu hrubozrnnou, a to v pětiprocentním kroku, jinými slovy v každém kroku bylo z povodí odebráno 5 % půdy jemnozrnné a přidáno 5 % půdy hrubozrnné.

2. změna krajinného krytu (landuse): uvažována záměna orné půdy za luční porost, a to v pětiprocentním kroku, jinými slovy v každém kroku bylo z povodí odebráno 5 % orné půdy a přidáno 5 % lučního porostu.

3. změna v množství dávkovaných hnojiv: bylo uvažováno odečítání v desetiprocentním kroku od standartního dávkování, dokud dávkování nebylo rovno 0 % standartní dávky a naopak přičítání k standartnímu dávkování dokud dávkování nebylo rovno 200 % standartní dávky.

4. změna v množství atmosférické (suché i mokré) depozice dusíku: bylo uvažováno odečítání ve dvacetipětiprocentním kroku od standartních hodnot atmosférické depozice, dokud depozice nebyla rovna 0 % standartní depozice a naopak přičítání k standartní hodnotě atmosférické depozice dokud depozice nebyla rovna 200 % standartní depozice.

5. změna teploty ovzduší o 2 st. C: bylo uvažováno zvýšení veškeré vstupní teploty do modelu o 2 st. C.

2 Modelování

Katastrální území se nachází v Jihomoravském kraji v severovýchodní části ORP Hodonín. Zájmové povodí spadá do dílčího povodí Moravy, respektive Dyje. Větší část zájmového povodí

1 Spíše než jako adaptační opatření byla tato změna zavedena za účelem zjištění citlivosti modelu na zvýšení teploty v rámci jakosti vody.
tvoří orná půda a jedná se o intenzivně zemědělsky využívanou krajinu. Byly zde navrženy dvě ochranné nádrže, doplněné o svodně převáděcí průlehy, hrázku, větrolamy a plošná opatření (organizační (odkaz na katalog), opatření na speciálních kulturách (odkaz na katalog) či zatrvnění). Jedná se pouze o návrhy vytvořené v rámci Studie erozních a odtokových poměrů a návrh ochranných opatření, kterou v roce 2015 vypracoval na základě požadavku obce prof. Miroslav Dumbrovský, CSc. Lokalizace i parametry těchto navrhovaných opatření tedy nejsou finální a během projekčních prací se mohou změnit. Cílem tohoto návrhu je zejména bezpečné odvedení vody, které zamezí škodám v intravilánu při přívalových deštích, zabránění degradace půdy, optimalizace vodního režimu krajiny, ochrana vodních útvarů před difúzním znečištěním, zlepšování hydrologických a vodohospodářských poměrů. Hlavním recipientem protékajícím lokalitou je Ratíškovický potok, který přivádí povrchovou vodu do katastru obce. Většina plochy zájmového hydrologicky uzavřeného celku povodí o celkové ploše 4,59 km² je zemědělsky využívána s minimálním podílem ostatních ploch. Průměrná nadmořská výška povodí ležícího v SV části Dolnomoravského úvalu činí 236 m n.m.

Umístění řešené lokality je zobrazeno na mapě 1 a satelitní mapa, kde je možné sledovat krajinný pokryv je poté na mapě 2. Navržená společná zařízení jsou na obrázku ??.

Základní charakteristiky hodnoceného povodí Ratíškovic:

Obrázek 1: Umístění povodí
2. MODELOVÁNÍ

Modelování přírodně blízkých opatření - Ratíškovice

Obrázek 2: Umístění povodí (satelitní mapa)

- plocha povodí: 2.798 km^2
- průměrný srážkový úhrn: 560.6 mm
- průměrná teplota: 9.35 st.C
- průměrná roční potenciální evapotranspirace: 724.1 mm
- průměrná nadmořská výška: 235.93 mn.m.
- průměrná sklonitost: 1.5%

2.1 Opatření

V zájmové lokalitě Ratíškovice jsou navržena tato opatření:

2.1.1 Ochranné nádrže (odkaz na katalog)

Ochranné nádrže byly obecně navrženy jako protierozní a protipovodňová opatření, zároveň také k akumulaci a retenci vody v krajině, infiltraci povrchového odtoku a k usazování splavenin.
Zemní hráze obou nádrží byly navrženy jako homogenní se sklony 1 : 2 na vzdušném líci a 1 : 3 na návodním líci. Vymezení i plošný rozsah navržených nádrží byly pro potřebu studie navrhovány orientačně. Přesné vymezení a stanovení základních parametrů hráze, zátopy a funkcích prvků je pro potřeby plánu společných zařízení a následnou realizaci navrhovat na podkladu přesného výskopisného zaměření a geologického průzkumu a vodohospodářského řešení. Nádrž N1 je prvotně navržena jako průtočná s maximální hloubkou 1,1 m a délkou hráze 206,8 m. Bezpečnostní objekt pro převádění povodňových průtoků je navržen jako sdružený funkční objekt s výskou přepadajícího paprsku vody 0,3 m. Do zátopy nádrže je dle návrhu zaústěn svodní průleh PRU2, místo vtoku by mělo být stabilizováno např. kamenným záhozem z lomového kamene. Prvotní odhad objemu nádrže je 9 445 m^3. Navržená nádrž N2 zatím nemá stanovené odhady parametrů.
2. MODELOVÁNÍ

Modelování přírodě blízkých opatření - Ratíškovice

Průlehoval pozemků je jedno z nejvhodnějších a nejdůležitějších podpůrných opatření na orné půdě, zejména použité v kombinaci s agronomickými a organizačními protierozními opatřeními. V zájmovém povodí jsou průlehy navržené s funkcí svodnou. Průleh PRU1 je navržen orientačně v délce 672,2 m a začíná v sedimentační vodní nádrži N2. Průleh PRU2 je navržen orientačně v délce 647,1 m a ústí do nádrže N1. Část průlehu je navržena doplnit hrázku šířky 0,6 m a se sklony svahů hrázky 1 : 3. Parametry pro oba průlehy byly předběžně stanoveny následovně: šířka ve dně průlehů je navržena 2,1 m, sklony svahů 1 : 5, minimální hloubka průlehů je navržena 0,6 m. Jejich kapacita a opevnění bude navrhováno na základě hydrotechnických výpočtů, pro daný návrhový průtok a vypočtené tečné napětí. Pro zajištění přesných tras i parametrů průlehů, odvádějících vodu do místa rozlivu nádrže, je nutno prověřit realizovatelnost trasy výskupného zaměřením a dle lokálních morfologických

Obrázek 4: Lokalita navržené nádrže N1

2.1.2 Svodné průlehy (odkaz na katalog)

Průlehoval pozemků je jedno z nejvhodnějších a nejdůležitějších podpůrných opatření na orné půdě, zejména použité v kombinaci s agronomickými a organizačními protierozními opatřeními. V zájmovém povodí jsou průlehy navrhované s funkcí svodnou. Průleh PRU1 je navržen orientačně v délce 672,2 m a začíná v sedimentační vodní nádrži N2. Průleh PRU2 je navržen orientačně v délce 647,1 m a ústí do nádrže N1. Část průlehu je navržena doplnit hrázku šířky 0,6 m a se sklony svahů hrázky 1 : 3. Parametry pro oba průlehy byly předběžně stanoveny následovně: šířka ve dně průlehů je navržena 2,1 m, sklony svahů 1 : 5, minimální hloubka průlehů je navržena 0,6 m. Jejich kapacita a opevnění bude navrhováno na základě hydrotechnických výpočtů, pro daný návrhový průtok a vypočtené tečné napětí. Pro zajištění přesných tras i parametrů průlehů, odvádějících vodu do místa rozlivu nádrže, je nutno prověřit realizovatelnost trasy výskupného zaměřením a dle lokálních morfologických
2. MODELOVÁNÍ

Modelování přírodě blízkých opatření - Ratíškovice

podmínek.

2.1.3 Větrolamy

Větrolam je prakticky jakákoli trvalá dřevinná vegetace lineárního charakteru, sloužící k ochraně půdy proti erozi, zejména větrné. V zájmovém povodí byly navrženy 5 větrolamů o celkové délce zhruba 2 780 m. Doporučená šířka větrolamů se pohybuje od 6 do 15 m podle místních podmínek a způsobu výsadby. Šířka 6 m se považuje za minimální. Bude-li prvek součástí lokálního biokoridoru sítě lokálních ÚSES, pak je minimální šířka 15 m. Za funkční výšku dřevinného patra je považován parametr minimálně 12–15 m. Vlastní větrolam by měl být tvoren 6 až 8 řadami stromů a 4 řadami keřů (po dvou řádách na obou stranách). Počet řad závisí na jejich vzájemné vzdálenosti.

2.1.4 Organizační opatření – vyloučení širokorožádkových plodin (odkaz na katalog)

Vhodný výběr skladby plodin na zemědělských pozemcích, tedy vyloučení širokorožádkových plodin, jako např. kukuřice či brambory, napomáhá ke snížení erozního smyvu, snížení degradace půdy a celkově dochází ke zlepšení vodního režimu v půdě.

2.1.5 Trvalé zatravnění (odkaz na katalog)

Trvalé zatravnění bývá obvykle navrhováno na mělkých a silně erozně ohrožených půdách s vyšším sklonem. Zatravnění chrání půdu před degradací, optimálně zapojený travní porost je nejlepší a neúčinnější protierožní ochrana a celkově napomáhá zlepšení vodního režimu v půdě.

2.1.6 Opatření na speciálních kulturách (odkaz na katalog)

Mezi speciální kultury patří sady a vinice (popř. také chmelnice). Ochranné opatření spočívá v zatravnění meziříadí nebo každého druhého řádku. Místo zatravnění lze v meziříadí trvalých kultur analogicky založit i porost kulturních plodin. Zatravnění meziříadí má stejné účinky jako zatravnění na orné půdě.

Internetové odkazy k lokalitě

http://www.adaptan.net/uploads/vystupy/2_Navrhy/Projektove_dokumentace_21_ku/Ratiskovice.zip
2. MODELOVÁNÍ

Modelování přírodě blízkých opatření - Ratíškovice

2.2 Klima

²Boxplot neboli krabicový graf či krabicový diagram jeden ze způsobů grafické vizualizace numerických dat pomocí jejich kvartilů. Střední krabicová část diagramu je shora ohraničena 3. kvartilem, zespodu 1. kvartilem a mezi nimi se nachází linie vymezující medián.
2. MODELOVÁNÍ

Modelování přírodě blízkých opatření - Ratíškovice

2.3 Návrhové srážky

Průběh návrhové srážky významně ovlivňuje hydrologickou odezvu. Rozmanitost průběhá je velmi značná a z těchto důvodů byly použity šestihodinové hyetogramy, které jsou uvedeny na následujícím obrázku. Tvary hyetogramů jsou označeny písmeny A až F, kdy tvary A, B, E a F mají jednoduchý průběh.
Obrázek 7: Návrhové srážky s dobou opakování 2, 5, 10, 20 a 50 let

Obrázek 8: Průběh 5-min intenzit návrhových srážek

Pravděpodobnost výskytu návrhové srážky pro danou N-letost je zobrazena v dalším grafu.
Obrázek 10: Analýza trendů srážek a teplot vzduchu pomocí Mann-Kendall testu

Obrázek 9: Rozdělení jednotlivých typů návrhové srážky

ab(‘Návrhová srážka [mm]’)

2.4 Analýza trendů

Na obrázku 11 jsou zobrazeny hodnoty CN I, CN II a CN III pro současné podmínky (bez navrhovaných opatření) a různé vláhové podmínky.
2. VÝSLEDKY MODELOVÁNÍ

2.5 Výsledky modelování hydrologické bilance modelem Bilan

2.6 Výsledky modelování modelem HEC-HMS

V zájmové lokalitě Ratíškovice byla navržena rozsáhlá organizační a agrotechnická protierozní opatření prakticky v plném rozsahu zemědělské půdy a jedna nová suchá nádrž s uvažovanou maximální zátopou 3,9 ha v závěrovém profilu povodí nad obcí. Zároveň vlivem navržených technických protierozních opatření (svorný průleh) došlo ke zvětšení plochy povodí z 1,88 km² o dalších 0,92 km², tedy téměř o 50 %. V rozšířené části povodí byla navržena obdobná plošná opatření a druhá, menší, suchá nádrž. Z hlediska průběhů krátkodobých srážek jsou v lokalitě nejčastěji zastoupeny tři nejintenzivnější typy A, B a C, s převahou dvouvřcholové srážky typu C, jak ukazuje ??.

Ovlivnění odtokové odezvy na extrémní návrhové srážky s těmito průběhy a s dobami opakování 2–50 let ukazuje 15 a procentuální snížení kulminačních průtoků, objemu odtoku do konce simulace a posun kulminace je vyčíslen v 3.

Uvedené grafy a hodnoty naznačují, že navržená opatření mají značný potenciál snížit objem
2. MODELOVÁNÍ

Modelování přírodě blízkých opatření - Ratíškovice

Obrázek 12: Průměrné měsíční odtokové výisky ve formě boxplotů pro jednotlivé varianty hodnocení

Obrázek 13: Změny měsíčních odtokových výšek ve formě boxplotů (před opatřením a po realizaci opatření)
2. MODELOVÁNÍ

Modelování přírodní blízkých opatření - Ratíškovice

odtoku v časovém úseku simulace (11 h) i kulminační průtoky. V případě objemů odtoku se jedná částečně o reálný vliv organizačních opatření, kdy bylo navrženo zatravnění významné části orné půdy a speciálních kultur, a částečně diskutabilní vliv větší suché nádrže a jejích parametrů použitých v modelu. Z grafů na obrázku 15 je patrné, že doba simulace byla poměrně krátká a během ní nebyl zcela dokončen výpočet transformace odtokových vln ve větší suché nádrži. Výsledné redukce objemu celé odtokové vlny jsou ve skutečnosti nižší, ale i tak se pohybují od úplného zachycení vlny s dobou opakování 2 roky až po snížení na 20 % pro dobu opakování 50 let. A to i přesto, že došlo ve skutečnosti ke zvýšení plochy povodí. V rozšířené části povodí totiž bylo také navrženo rozsáhlé zatravnění orné půdy i mezířadí na speciálních kulturách, které má dle použité výpočetní metody potenciál zachytit prakticky celý objem návrhové srážky až s dobou opakování 50 let. Rovněž při posuzování redukce kulmačních průtoků je třeba opatrnosti. Významná snížení u relevantních odtokových vln (doba opakování 10-50 let) se pohybuje v rozmezí 3-9 % původní hodnoty před realizací opatření. To je důsledkem použitých parametrů výpustních objektů modelovaných nádrží, které byly pro účely této studie stanoveny pouze orientačně. Přesnéjší posouzení by vyžadovalo detailnější technický výpočet. Ze stejného důvodu je nutné s opatrností posuzovat i doby zpoždění kulminací, které jsou transformací v nádrži podstatně ovlivněny. Z hlediska průběhu posuzovaných návrhových srážek je mírně kritičtější nejintenzivnější typ A, nad ostatními dominuje zejména u vyšších dob opakování.

2.7 Výsledky modelování modelem HYPE

Obrázky 16, 17, 18 a 19 sumarizují citlivostní analýzu a dávají jasnou představu o tom jaká komponenta modelu má vliv na tu kterou koncentraci modelovaných látek. Na ose Y lze vidět danou komponentu modelu (adaptační opatření) na ose X pak procentuální změnu dané komponenty, přičemž hodnota (resp. barva) dlaždice udává průměrnou hodnotu změny od výchozí modelované koncentrace. Modrá barva značí pokles od výchozí koncentrace, naopak červená značí nárůst od výchozí koncentrace a bílá barva reprezentuje nulovou změnu. Hodnotový rozsah je pro každou látku specifický, poněvadž jejich koncentrace v povodích, respektive v tocích je rozdílná. Obecně lze vyvozovat, že s přechodem z jemnozrnné půdy na půdu s hrubší strukturou klesá koncentrace všech čtyř modelovaných látek (jmenovitě anorganický dusík, organický dusík, pevný fosfor a rozpustný fosfor). Přechod z orné půdy na luční porost zapříčiněuje pokles koncentrace dusíku a rozpustného fosforu, nikoliv však pevného fosforu. Dávkování hnojiv má vliv pouze na fosfor v obou fázích a jejich výsledná koncentrace kladně koreluje s mírou dávkování, dusík zůstává neměnný. Stejně tak atmosférická depozice dusíku logicky kladně koreluje s mírou koncentrace dusíku v tocích. Zvýšená teplota o 2 st. C zapříčiněuje nárůst pevného fosforu a organického dusíku a naopak pokles rozpustného fosforu
Obrázek 15: Návrhové průtoky dle N - letostí pro jednotlivé typy vln (čárkované-před opatřením, plně-po opatření)
a anorganického dusíku.

Obrázek 16: Anorganický dusík
Obrázek 17: Organický dusík

Obrázek 18: Pevný fosfor
Na lokalitě Ratíškovice je dlouhodobě výrazně negativní bilance (srážky-potenciální evapotranspirace), což vede k nízkým odtokovým výškám, a to především v letních období. Navržená a realizovaná opatření způsobí pokles odtoku především v zimním období, kdy tato voda zůstane zadržena v krajině. V letním období nebude docházet ke změnám průměrných odtoků a k mírnému poklesu dojde v měsících zaří a říjen. Nová vodní nádrž bude schopna částečně mírnit dopady hydrologického sucha.

Navržená opatření mají značný potenciál snížit objem odtoku v časovém úseku simulace (11 h) i kulminační průtoky. V případě objemů odtoku se jedná částečně o reálný vliv organizačních opatření, kdy bylo navrženo zatravnění významné části orné půdy a speciálních kultur, a částečně diskutabilní vliv větší suché nádrže a jejích parametrů použitých v modelu.

Obecně lze vyvozovat, že s přechodem z jemnozrnné půdy na půdu s hrubší strukturou klesá koncentrace všech čtyř modelovaných látek (jmenovitě anorganický dusík, organický dusík, pevný fosfor a rozpustný fosfor). Přechod z orné půdy na luční porost zapříčinuje pokles koncentrace dusíku a rozpustného fosforu, nikoliv však pevného fosforu. Dávkování hnojiv
má vliv pouze na fosfor v obou fázích a jejich výsledná koncentrace kladně koreluje s mírou dávkování, dusík zůstává neměnný.

References

Müller, M., Kašpar, M., Bližňák, V. (2017) Rainfall time structure variability depending on precipitation depths and duration.

Tabulka 2: Hodnoty CN II pro jednotlivá opatření a hydrologické skupiny půd

<table>
<thead>
<tr>
<th>Opatření</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zasakovací pásy</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Svodný průleh</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Svodný příkop</td>
<td>81</td>
<td>88</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td>Vyloučení erozně nebezpečných plodin</td>
<td>77</td>
<td>86</td>
<td>91</td>
<td>94</td>
</tr>
<tr>
<td>Protierožní agrotechnika -širokoř. kultury</td>
<td>64</td>
<td>74</td>
<td>81</td>
<td>85</td>
</tr>
<tr>
<td>Vyloučení širokořádkových plodin mírnější</td>
<td>75.5</td>
<td>84.5</td>
<td>89.5</td>
<td>92</td>
</tr>
<tr>
<td>Vyloučení erozně nebezpečných plodin a protierožní agrotechnologie</td>
<td>74</td>
<td>83</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>Plošné TTP (zatrvnění plošné dle HPJ)</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Stabilizace drah soustředěného odtoku</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Ochranné pásy podél vodních toků a vod. ploch</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Zatrvnění na speciálních kulturách</td>
<td>37.6</td>
<td>61.3</td>
<td>73.6</td>
<td>79.9</td>
</tr>
<tr>
<td>Plošné TTP (zatrvnění plošné dle sklonu)</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Plošné TTP (zatrvnění plošné dle eroze)</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Polní cesta zpevněná s příkopem</td>
<td>83</td>
<td>89</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>Ochranný sad, vinice</td>
<td>37.6</td>
<td>61.3</td>
<td>73.6</td>
<td>79.9</td>
</tr>
<tr>
<td>Zatrvnění</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Agrotechnika mírnější</td>
<td>75.5</td>
<td>84.5</td>
<td>89.5</td>
<td>92</td>
</tr>
<tr>
<td>Agrotechnika přísnější</td>
<td>74</td>
<td>83</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>Mez, hrázka</td>
<td>32.5</td>
<td>57</td>
<td>70.5</td>
<td>77.5</td>
</tr>
<tr>
<td>Záchytný průleh</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
<tr>
<td>Větrolam</td>
<td>30</td>
<td>55</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>Mokřad</td>
<td>83</td>
<td>89</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>Vodní nádrž nová</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Biocentrum</td>
<td>30</td>
<td>55</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>Biokoridor</td>
<td>30</td>
<td>55</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>Interakční prvek</td>
<td>30</td>
<td>55</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>Opatření na stávajících VN</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Přehrážka</td>
<td>83</td>
<td>89</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>Revitalizace toku a nivy</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Suchá nádrž</td>
<td>34.5</td>
<td>59.5</td>
<td>72.5</td>
<td>79</td>
</tr>
</tbody>
</table>
Tabulka 3: Vyhodnocení krátkodobých srážko-odtokových epizod

<table>
<thead>
<tr>
<th>N(roky)</th>
<th>TY P</th>
<th>Q_pจี</th>
<th>Q_pจี</th>
<th>V_pจี</th>
<th>V_pจี</th>
<th>T_pจี</th>
<th>T_pจี</th>
<th>dQ</th>
<th>dV</th>
<th>Posun</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>0.40</td>
<td>0.00</td>
<td>2 901</td>
<td>-</td>
<td>14:30</td>
<td>10:00</td>
<td>-100%</td>
<td>-100%</td>
<td>-270</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0.40</td>
<td>0.00</td>
<td>2 898</td>
<td>-</td>
<td>14:45</td>
<td>10:00</td>
<td>-100%</td>
<td>-100%</td>
<td>-285</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>0.40</td>
<td>0.00</td>
<td>2 896</td>
<td>-</td>
<td>15:00</td>
<td>10:00</td>
<td>-100%</td>
<td>-100%</td>
<td>-300</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1.30</td>
<td>0.00</td>
<td>8 338</td>
<td>36</td>
<td>14:20</td>
<td>19:25</td>
<td>-100%</td>
<td>-100%</td>
<td>305</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>1.20</td>
<td>0.00</td>
<td>8 332</td>
<td>36</td>
<td>14:30</td>
<td>19:25</td>
<td>-100%</td>
<td>-100%</td>
<td>295</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>1.10</td>
<td>0.00</td>
<td>8 319</td>
<td>32</td>
<td>14:50</td>
<td>19:50</td>
<td>-100%</td>
<td>-100%</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>2.10</td>
<td>0.03</td>
<td>13 488</td>
<td>460</td>
<td>14:15</td>
<td>18:10</td>
<td>-99%</td>
<td>-97%</td>
<td>235</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>2.00</td>
<td>0.03</td>
<td>13 480</td>
<td>454</td>
<td>14:25</td>
<td>18:10</td>
<td>-99%</td>
<td>-97%</td>
<td>225</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>1.80</td>
<td>0.03</td>
<td>13 461</td>
<td>421</td>
<td>14:45</td>
<td>18:35</td>
<td>-98%</td>
<td>-97%</td>
<td>230</td>
</tr>
<tr>
<td>20</td>
<td>A</td>
<td>3.20</td>
<td>0.06</td>
<td>19 681</td>
<td>1 148</td>
<td>14:15</td>
<td>18:05</td>
<td>-98%</td>
<td>-94%</td>
<td>230</td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td>2.90</td>
<td>0.06</td>
<td>19 674</td>
<td>1 124</td>
<td>14:25</td>
<td>18:05</td>
<td>-98%</td>
<td>-94%</td>
<td>220</td>
</tr>
<tr>
<td>20</td>
<td>C</td>
<td>2.60</td>
<td>0.06</td>
<td>19 650</td>
<td>1 050</td>
<td>14:45</td>
<td>18:25</td>
<td>-98%</td>
<td>-95%</td>
<td>220</td>
</tr>
<tr>
<td>50</td>
<td>A</td>
<td>4.80</td>
<td>0.14</td>
<td>29 323</td>
<td>2 718</td>
<td>14:10</td>
<td>17:50</td>
<td>-97%</td>
<td>-91%</td>
<td>220</td>
</tr>
<tr>
<td>50</td>
<td>B</td>
<td>4.40</td>
<td>0.14</td>
<td>29 300</td>
<td>2 666</td>
<td>14:20</td>
<td>17:50</td>
<td>-97%</td>
<td>-91%</td>
<td>210</td>
</tr>
<tr>
<td>50</td>
<td>C</td>
<td>3.80</td>
<td>0.14</td>
<td>29 274</td>
<td>2 502</td>
<td>14:45</td>
<td>18:15</td>
<td>-96%</td>
<td>-91%</td>
<td>210</td>
</tr>
</tbody>
</table>